
48

Artificial intelligence is not a new field in

computer science. It has existed since the man
started thinking. The early AI researchers were
philosophers and psychologists who wondered
about the reasoning capability of human beings.
But the AI research per se can be said to have
started in early fifties when computers became
available to implement the little understanding
we had of human beings as artificial reasoning.
The famous experiment of Alan Turing was the
first attempt to formalize the AI. Since then, our
understanding of intelligence and capability its
imitation has been on the rise. This has of course
been made possible by the power of modern
computers. One can see from these
developments that the increasing intelligence of
artif icial machines/computers has been
synonymous with the computing speed and
increasing memory capacity of these. We have
seen the first practical AI systems emerge starting
with the mathematical theorem proving
programs, game playing software and the most
successful expert systems. The later are rule based
reasoning systems, which can do inductive or
deductive reasoning. The rules however always
derived from human expert somehow. Fuzzy
reasoning has been a feather in the cap of
computing paradigms, which are very near in
human reasoning mechanism. A host of new
methodologies have since emerged variously
called artificial neural networks, evolutionary
algorithms, bio-inspired computing and so on.

The above developments however remained
confined to only single AI entities. Whereas we
know that human beings do not always think
and work alone rather they delve in societies.
Thus their thinking and behaviour is influence
in a large manner by the neighbouring human
beings alternately called family and social
structure. As if we have reached the peak in
imitating intelligence of human beings, a major
segment of AI researchers has now focussed on
how to imitate the human in the social
framework. Psychologists and sociologists and
linguists have built up a large amount of theory
as the field is multi-disciplinary. Now computer
scientists have joined this group and started
implementing multiple intelligent entities, which
think independently, communicate, negotiate

Distributed Artificial Intelligence and

Multi-Agents

Dr. Rajveer S Shekhawat

Dr. Rajveer S. Shekhawat is Senior Scientist,
Central Electronics Engineering Research
Institute, Pilani, Rajasthan

with the high-speed networks, AI has
found a new incarnation namely
Distributed AI, which can now solve
some the real life problems using
distributed versions of the AI
algorithms. A new orientation to the
application of AI has emerged termed
as agents, which can reason on their
own given the goals and the capability
to glean the environmental information.
With the replacement of wired
communication by wireless protocols,
the agents can be made more versatile
in terms of mobility and constraint free
communication. This has enabled DAI
to be extended to colonies of agents
opening a whole new frontier of research
for imitating social behaviour of the
intelligent agent societies which can co-
operate and/or compete to achieve
individual or group objectives. This paper
introduces the concept of DAI and the
enabling technologies for its
implementation followed by the
application to multi-agents. The
different issues involved in each of the
theme are briefly discussed.

With the empowerment of computing

49

and take decisions affecting the group as a whole.
This has been made possible by developments
in the field of computer communications,
networking and wireless connectivity. The
networked communities have necessitated the
emergence of intelligent entities also called agents.
Intelligent agents implemented as programs are
termed as software agents. If robots are
embedded with intelligence and are able to co-
operate for a given task, these are termed as multi-
agents or humanoids. In this paper, an attempt
has been made to put in the perspective the
enabling technologies for multi-agents and swarm
intelligence. In section2, how computers at
remote locations can communicate with each
other and understand and co-operate has been
explored. The development of technologies such
as components (DCOM, CORBA) etc has been
included. Section three delves into how the
distributed computing has been used to
implement DAI. Section 4 takes up issues
involved in implementing software agents and
multi-agents as communicating intelligent agents.
Narrating the near future scenario concludes the
paper.

2. Distributed Computing and Systems:

Distributed systems require that computations
running in different address spaces, potentially
on different hosts, be able to communicate. For
a basic communication mechanism, the JavaTM

programming language supports sockets, which
are flexible and sufficient for general
communication. However, sockets require the
client and server to engage in applications-level
protocols to encode and decode messages for
exchange, and the design of such protocols is
cumbersome and can be error-prone.

An alternative to sockets is Remote Procedure
Call (RPC), which abstracts the communication
interface to the level of a procedure call. Instead
of working directly with sockets, the programmer
has the illusion of calling a local procedure,
when in 3 fact the arguments of the call are
packaged up and shipped off to the remote target
of the call. RPC, however, does not translate well
into distributed object systems, where
communication between program-level objects
residing in different address spaces is needed. In
order to match the semantics of object

invocation, distributed object systems require
remote method invocation or RMI. In such systems,
a local surrogate (stub) object manages the
invocation on a remote object. However
application of RMI is limited to JAVA only. DCOM
provides a higher-level abstraction for developing
distributed software. DCOM and CORBA are
based on an object–oriented model. DCOM is a
desktop-centric middleware developed by
Microsoft, where as CORBA is an enterprise-
focused middleware standard maintained by
OMG.

A distributed system is collection of autonomous
computers linked by a network and equipped
with distributed system software. The distributed
system software enables the comprising
computers to co-ordinate their activities and share
their resources.

Middleware: Middleware in distributed systems
is of type of distributed system software, which
connects different kinds of applications and
provides distribution transparency to its
connected applications .It is used to bridge
heterogeneities that occurred in the systems.
Middleware replaces session, presentation and
application layers of OSI model. Figure one
shows middleware layers as implemented in RMI.

Based on significant standards, middleware can
be divided into several categories such as
SOCKET, RPC, RMI, DCOM and CORBA. We
shall briefly describe each of these.

2.1 Sockets: A Socket is a peer-to-peer
communication endpoint. Sockets are generic
interfaces, which enable processes that reside in
different computers to communicate to each
other.

Two processes communicate with each other via
their sockets. The process that send data to
another process is called sending process while
the process that receive the data is called
receiving process (Refer figure two).

2.2 Remote Procedure Calls (RPC): Software
developed using RPC is easier to be ported
compared to sockets. The strength of RPC lies in
its ease of use, portability and robustness. Its ease
of use is the result of the higher-level abstraction
that to provides to the developers and RPC’s
similarity with normal procedure calls. RPC

50

mechanism, an extension of the procedure call
mechanism in the sense that it enables a call to
be made to a procedure that do not reside in
address space of calling process. Both normal
and remote procedure calls are usually
synchronous and follow the request-reply
mechanism, in which a client is blocked until its
server responds to the call. A major issue in the
design of an RPC facility is its transparency.

2.3 Remote Invocation Method (RMI): RMI
gives a better transparency of low level details
compared to RPC and Sockets. RMI is a Java
based middleware that allows methods of java
objects located in java Virtual machine to be
invoked from another JVM even when this JVM is
across a network. Remote method invocation (RMI)
is the action of invoking a method of a remote
interface on a remote object. Most importantly,
a method invocation on a remote object has the
same syntax as a method invocation on a local
object.

RMI applications are often comprised of two
separate programs: a server and a client. A typical
server application creates a number of remote
objects, makes references to those remote objects
accessible, and waits for clients to invoke
methods on those remote objects. A typical client
application gets a remote reference to one or
more remote objects in the server and then
invokes methods on them. RMI provides the
mechanism by which the server and the client
communicate and pass information back and
forth. Such an application is sometimes referred
to as a distributed object application. A remote
object is one whose methods can be invoked
from another Java virtual machine, potentially
on a different host. (Refer figure three)

2.4 Component Object Model (COM):
Distributed COM (DCOM) is a middleware
developed by Microsoft that provides a
distributed framework based on object-oriented
model. It is the distributed extension to the
component object model, which provides an
object remote procedure call. (ORPC) on top of
RPC.DCOM services are divided in two parts :
OLE and COM.COM provides the underlying
object systems on which OLE services rely upon.
COM services are

• uniform data transfer,

• monikers,

• persistence storage.

Uniform data transfer service is a COM service
that provides the basic facilities to exchange data
between applications .It extends the windows
clipboard to handle OLE objects.

Monikers service provides the mechanism to
name objects for their identifications.

Persistence storage device allows objects to be
stored in the disk.OLE parts contain three services

• compound documents

• drag-and drop

• automation.

Compound documents services provides ability
to link information in a document through three
services: in-place activation, linking and
embedding . In-place activation enables
container applications to hold component
objects, permitting the user to manipulate
component application operations. Linking
enables multiple applications to share common
data. Changes to common data are reflected to
all sharing applications whenever the data are
changed.

Embedding allows container objects to have
separate copies of the same data. The next service
is drag-and-drop, which permits user to add OLE
objects by dragging and dropping them into their
containers. Automation service is an OLE services
that allow developers to reuse existing
components for building a new application by
exposing their operations.

2.5 Common Object Request Broker
Architecture (CORBA): CORBA is the acronym
for Common Object Request Broker Architecture,
OMG’s open, vendor-independent architecture
and infrastructure that computer applications
use to work together over networks. Using the
standard protocol IIOP, a CORBA based -program
from any vendor, on almost any computer,
operating system, programming language, and
network, can interoperate with a CORBA-based
program from the same or another vendor, on
almost any other computer, operating system,
programming language, and network. CORBA is

51

a product of an industry consortium of 500 odd
companies called the Object Management
Group (OMG). It is a set of specifications for
providing interoperability and portability to
distributed object oriented applications. CORBA-
compliant applications can communicate with
each other regardless of location, implementation
language, underlying operating system and
hardware architecture.

CORBA is composed of five major components:

i. Object Request Broker (ORB): The ORB
is the object bus. It provides the
middleware that mediates the interactions
between client applications needing
services and server applications capable
of providing them.

ii. Interface Definition Language (IDL): IDL
provides architecture and
implementation independence to
CORBA-compliant applications. It is a
declarative language in which object
interfaces are defined and advertised. The
interface definition is independent of the
actual object implementation

iii. Interface Repository: It is an on-line
database of object definitions that can be
queried at run-time for dynamic method
calls, for locating potentially reusable
software components and for type
checking of method signatures.

iv. Object Adaptor: It provides the run-time
environment for the server application
and handles incoming client calls.

v. CORBA Services: These augment the
functionality of the ORB. CORBA defines
services for persistence, transactions,
concurrency, database queries, licensing,
etc. (Refer figure four)

3. Distributed Artificial Intelligence:

Artificial Intelligence research is fundamentally
concerned with the intelligent behavior of
machines. In attempting to create machines with
some degree of intelligent behavior, AI researchers
model, theorize about, predict, and emulate the
activities of people. Because people are quite
apparently social actors, and also because
knowledgeable machines will increasingly

embedded in organizations comprising people
and other machines, AI research should be
concerned with the social dimensions of action
and knowledge as a fundamental category of
analysis. But current AI research has been
inadequate in dealing with much human
behavior and many aspects of intelligence.

In most contemporary AI research and practice,
the unit of analysis and of development is a
computational process with a single locus of
control, focus of attention, and base of
knowledge-a process organization inherited from
von Neumann computer architectures and from
psychology. While it is becoming easier to
implement such a process as a concurrent system
using an underlying distributed processing layer
or a parallel language (such as concurrent prolog
or lisp) the basic mechanisms of reasoning and
problem solving generally remain bound to a
single, monolithic conception of knowledge and
action. Recently, however, there has been a
revival of interest in approaches to analyzing and
developing intelligent “communities” which
comprise collections of interacting, coordinated
knowledge-based processes. The body of
research that deals with this problem-level
concurrency in AI systems has come to be known
as distributed artificial intelligence (DAI).
Researchers in DAI are concerned with
understanding and modeling action and
knowledge in collaborative enterprises. DAI
research provides a very rich ground for re-
examining some of the premises and formalisms
upon which notions such as representation and
reasoning , or knowledge and action, are
classically located. Contemporary research in
DAI inherently deals with social conceptions of
knowledge and action (actually, interaction).

Here we briefly examine contemporary research
in “classical” DAI. Following that, we introduce
some principles which are desiderata for an
inherently social conception of knowledge and
action, consistent with the premises of open DAI
systems.

There are many reasons for wanting to distribute
intelligence or cope with multi-agent systems. In
some domains, (e.g., distributed sensing, medical
diagnosis, air-traffic control), knowledge or
activity is inherently spatially distributed. The

52

distribution can arise. because of geographic
distribution coupled with processing or data
bandwidth limitations, because of the natural
functional distribution in a problem, because of
a desire to distribute control (e.g., for fail-soft
degradation), or for modular knowledge 9
acquisition. Other reasons for distribution
include adaptability, reduced cost, ease of
development and management, increased
efficiency or speed, history, needs for isolation
or autonomy, naturalness, increased reliability,
resource limitations, and specialization.
Opportunity is a second reason for studying DAI
systems. Hardware and software mechanisms for
distributing and controlling the interaction of
multiple processes have begun to reach maturity,
in both shared- memory and distributed-memory
multi-computer ensembles. Third, there is interest
in integrating existing AI systems to gain power
and to leverage capability, which necessarily
means coping with problems of discrepancies in
representation and design. Fourth, problems are
sometimes simply too large or complex to solve
by single processes, for reasons of semantic
representation as well as computational power;
distributed approaches may provide solutions.
Finally, it is an empirical observation that most1
human activity involves more than one person.
As researchers have tried to understand and
model human problem solving and intelligent
behavior, they have begun to take this observation
more seriously as a foundation for theories.

Research in DAI promises to have wide-ranging
impacts in basic AI research (problem
representations, epistemology, joint concept
formation, collaborative reasoning and problem
solving), cognitive science (e.g., mental models,
social cognition), distributed systems (reasoning
about knowledge and actions in distributed
systems, architectural and language support for
DAI), the engineering of AI systems: (“cooperating
expert systems,” distributed sensing and data
fusion, cooperating robots, collaborative design
problem solving, etc.), and human-computer
interaction (task allocation, intelligent interfaces,
dialogue coherence, speech acts). As Nilsson has
pointed out, DAI research is attractive for
fundamental reasons: to coordinate their actions,
intelligent agents need to represent and reason

about the knowledge, actions, and plans of other
agents. DAI research can help to improve
techniques for representing and using knowledge
about beliefs, action, plans, goals, etc., as well as
helping us to discover the extent to which, when
analyzed from the outside in-from the social to
the individual-these concepts are useful or
necessary.

4. Intelligent Agents and Multi Agents:

In this section, we shall focus on on multi-agents
and learning, that is, on learning that relies on or
even requires the interaction among several
intelligent agents. An agent is commonly
understood as a computational or natural entity
that can be viewed as perceiving in and acting
upon its environment, as being autonomous in
that its behavior is at least partially determined
by its own experience, and as pursuing goals or
carrying out tasks (see, e.g., Huhns & Singh, 1998)
for a contemporary collection of articles on
agents and multiagent systems). Multiagent
learning emerged as a topic of active research in
the late 1980s and early 1990s, and since then
has attracted steadily increasing attention in both
the multiagent systems and distributed artificial
intelligence community (e.g., Bond & Gasser,
1988; Gasser & Huhns, 1989; Huhns, 1987;
O’Hare & Jennings, 1996) and the machine
learning community. This attention can be
attributed to two primary insights:

i. There is a strong need for learning
techniques and methods in the area of
multiagent systems. These systems show
several characteristics that make it
particularly difficult to specify them
correctly and completely: for instance,
there is no global system control, each
agent usually has just incomplete
information, the information owned by
different agents can be contradictory, and
typically the agents are intended to
operate in complexopen, large, dynamic,
and unpredictable-environments.
Because of these characteristics, it is
obviously desirable that the agents
themselves are capable of improving their
own behavior, in addition to the overall
system’s behavior.

53

ii. The machine learning area can profit
from an extended view capturing both
singleagent and multiagent learning. It is
one of the primary concerns of this area
to understand the principles and
mechanisms of learning, whether it occurs
in computational or natural systems.
Achieving such an understanding requires
considering potential learners not just as
“stand-alone entities” that act in isolation,
but also as “social entities” that interact
with one another. This obviously holds
for humans and other animals as it lies in
their very nature to live and act together,
as well as for computing systems as they
become more and more connected with
each other through long-range and local-
area networks. Compared to single-agent
learning, multiagent learning raises several
qualitatively new 11 issues centered
around the relationship between learning
and interaction. These issues can be
divided into two groups:

i. The role of interaction for learning .
Interacting agents, as they exchange
information or modify the shared
environment in which they are
embedded, can significantly influence
each other in their individual learning.
Possible forms of influence are, for
instance, initiation, acceleration,
redirection, and prevention of another
agent’s learning process. Interaction
makes it possible that learning by one
agent can considerably change the
conditions for learning with which other
agents have to cope. In particular,
interaction is the key to various forms of
collective learning in which several agents
try to achieve as a group what the
individuals cannot, by sharing the load of
learning and by pursuing a common
learning goal on the basis of their diverse
knowledge, capabilities, experience,
preferences, and so forth.

ii. The role of learning for interaction. Several
dimensions of multiagent interaction can
be subject to learning. These include:

when to interact, with whom to interact,
how to interact, and what exactly the
content of interaction should be. An
important pattern of multiagent
interaction is coordination, among both
cooperative and competitive agents.
Many learning approaches to
coordination are possible. For instance,
agents can learn to predict the behavior
of others, they can learn to detect and
resolve conflicts among their planned
activities, they can learn to use a common
ontology, they can learn to develop
shared viewpoints and assumptions, they
can learn to form organizational structures
(usually called teams or groups) that enable
them to fulfill their design objectives, and
they can learn to re configure their styles
of coordination to respond best to
environmental changes.

It is clear that these issues do not arise in single-
agent contexts. There are differences in both the
potential paths and the potential goals of learning
in single-agent and multiagent settings, and this
justifies our contention that multiagent learning
is more than a mere magnification of single-agent
learning. Researchers in DAI and multiagent
systems have found that knowledge
representation and reasoning are different for
teams of agents and 12 for societies of agents,
than they are for individual agents. A group-a
team or society might know something that no
individual in the group knows. For example, a
majority of the group might prefer chocolate ice
cream to vanilla ice cream, but the individuals
ought to be aware only of their own preferences.
Similarly, learning should be different for teams
and societies than for individuals. The extent of
a society is not fixed and is not necessarily known
to any members. Tasks and goals might not be
defined or agreed upon, and measures of their
success or satisfaction might also not be agreed
upon. In such an environment, coordinated
behavior is a challenge, but certainly requires
learning, both in individual knowledge and in
group knowledge. These are appropriate and still
open issues for the machine learning research
community.

54

Conclusion

The increasing sophistication of today ’s
information era poses certain challenges to
traditional information technology systems.
Intelligent Agents and agent based software
technology is rapidly evolving to meet demands
of this new information era. However, before
agent-based solutions can be routinely and
successfully exploited in real world problems,
first certain fundamental research and software
engineering issues have to be addressed. Apart
from this, for implementing multi-agents, some
of the challenges include understanding the
meaning, authentication, secrecy, and security.

Looking at the pace of developments and
progress, it is not unlikely that in this century
only, we shall see realistic multi-agent
deployments. A good start has already been made
by Robocup tournaments. The search of web is
being improved ever by deploying soft but
intelligent agents on the net. A set of complex
computational problems are already being solved
on the network named as grid computing albeit
with less of intelligence. The time is nor far when
such attempts would equal the human feet. Let
us just not cross our fingers and wait. Let us join
this effort of Intelligent agents and swarm
intelligence.

REFERENCE

• Bond, A. H., & Gasser, L. (1988) (Eds.).
Readings in distributed artificial intelligence.
San Mateo, CA: Morgan Kaufmann.

• Gasser, L., & Huhns, M. N. (1989) (Eds.)
Distributed artificial intelligence II. London:
Pitman.

• Huhns, M. N. (1987) (Ed.). Distributed
artificial intelligence. London: Pitman.

• Huhns, M. N., & Singh, M. P. (1998) (Eds.).
Readings in agents. San Francisco, CA: Morgan
Kaufmann.

• O’Hare, G. M. P., & Jennings, N. R. (1996)
(Eds.). Foundations of distributed artificial
intelligence. New York: Wiley.

• Sen, S. (1996) (Ed.). Adaptation, coevolution
and learning in multi agent systems (Technical
Report SS-96-01). Menlo Park, CA: AAAI
Press.

• Sen, S. (1997) (Ed.). Multiagent learning
(Technical Report WS-97-03). Menlo Park, CA:
AAAI Press.

• Sen, S. (1998) (Guest-Ed.). Special issue on
Evolution and Learning in Multiagent
Systems, International Journal of Human-
Computer Studies, 48 (1).

• Weiss, G. (1997) (Ed.). Distributed artificial
intelligence meets machine learning. Lecture
Notes in Artificial Intelligence, Vol. 1221.
Berlin: Springer- Verlag.

• Weiss, G. (1998) (Guest-Ed.). Special issue on
Learning in Distributed Artificial Intelligence
Systems, Journal of Experimental and
Theoretical Artificial Intelligence, 10 (3).

• Weiss, G., & Sen, S. (1996) (Eds.) Adaption
and learning in multi-agent systems. Lecture
Notes in Artificial Intelligence, Vol. 1042.
Berlin: Springer- Verlag.

55

Sender

Sending

Socket

Receiv

Receiv

Sock

Computer X Computer

DATA

Figure Two : Two Process communication by Socket

Application

RMI, RPC and Events

Rquest-Reply Protocol

Marshalling and External

Data Representation

UCP and TCP

Middleware

Figure : One

56

Network

JVM

Called

Skeleton

JVM

Calling

Stub

FIGURE : THREE

Figure 1: A request passing from client to object implementation

Client Object

Implementation

IDL

Skeleton
IDL

Stub

Request

Object Request Broker

FIGURE : FOUR

